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Observations of the flow of a two-layer fluid resulting from the motion of a towed 
streamlined two-dimensional obstacle are described in some detail. The experiments 
were designed to further our understanding of the factors governing the nature and 
magnitude of upstream disturbances in the general flow of stratified fluid over 
two-dimensional topography, and predictions for arbitrary two-dimensional flows are 
made from the results of these experiments. In particular, the relationship between 
uniformly stratified flow and single-layer flow over topography is suggested. Most of 
the observed features of interest in these experiments are nonlinear in character. 
Relatively complete descriptions of the observed flows are presented over a wide range 
of parameter values, and the phenomena observed include upstream undular and 
turbulent bores, bores with zero energy loss, ‘rarefactions ’ (in which the interface 
height changes monotonically over a transition region of continuously increasing 
length), and downstream hydraulic drops and jumps. Their properties are shown 
to be broadly consistent with predictions from a two-layer hydrostatic model 
based on continuity and momentum considerations, which employs jump criteria 
and rarefaction equations where appropriate. Bores occur because of nonlinear 
steepening when the layer containing the obstacle is thinner than the other, and 
rarefactions occur when this layer thickness is comparable with or greater than that 
of the other layer. The speed and amplitude of the upstream bores are governed by 
nonlinear effects, but their character is determined by a balance between nonlinear 
steepening, wave dispersion and interfacial friction when the bore is non-turbulent. 

Experimental evidence is presented for two types of hysteresis or ‘multiple 
equilibria’ - situations where two different flow states may exist for the same external 
steady conditions. I n  the first of these hysteresis types, the upstream flow may be 
supercritical or consist of an upstream bore state. It is analogous to the type 
anticipated for single-layer flow by Baines & Davies (1980) and described numerically 
by Pratt  (1983), but it is only found experimentally for part of the expected 
parameter range, apparently because of interfacial stress effects. The second 
hysteresis type is new, and involves the presence or absence of a downstream 
hydraulic drop and following jump. 

1. Introduction 
Over the past forty years or so there has been a great deal of interest in the general 

nature of the flow of stratified fluids over topography. Most of these studies have been 
theoretical and, of these, most have utilized linearized perturbation equations and 
represented the topography by means of a linearized boundary condition. I n  many 
situations where the flow is two-dimensional, however, laboratory observations have 
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shown that an obstacle may generate motions which propagate arbitrarily far 
upstream, and which cause a permanent change in the velocity and density profiles 
upstream of the obstacle. These motions are generated over the obstacle by a 
nonlinear process (Baines 1977, 1979a). The magnitude of these upstream motions, 
when they occur, increases rapidly with increasing obstacle height A ,  and may bccwme 
sufficiently large to completely block the flow a t  low levels. This was first demonstrated 
experimentally by Long (1954, 1955). I n  these circumstances the linear theory is of 
little value ; in fact, it  may give solutions containing unrealistic singularitiw for some 
parameter values. A recent review of relevant laboratory experiments is given in 
Baines & Davies (1980). 

Our primary objective is to be able to calculate the flow of stratified fluid over 
obstacles in general circumstances. If the upstream flow incident on an obstarlc is 
steady and may be regarded as known, the flow over and downstream of the obstacle 
may, in principle, be calculated numerically (leaving aside turbulence effects, 
separation phenomena, etc.). However, ( a )  the flow so calculated may be unstable; 
and ( b )  the time-dependent introduction of the obstacle into a known flow may alter 
the upstream flow incident on the obstacle. Hence the first requirement in the 
understanding of the initial-value problem for stratified flow over topography i s  the 
ability to  calculate these upstream motions, i.e. one wants to be able to calculate the 
extra upstream flow for arbitrary (but dynamically stable) initial velocity CT(2) and 
BruntiViiisala frequency N(z)  profiles, where z is the vertical c*oordmate. At present, 
some partial answers are available for special cases, which suggest the nature of the 
general solution to this problem. 

These special cases are as follows. 

1.1 .  (1, N constant with h,eight inJluid of infinite d q t h  

The development in time of steady-state flow over an obstacle starting from rest 
has been calculated by two different perturbation procedures, where bhe expansion 
has been evaluated for terms of higher order bhan the first'. These are an expansion 
in powers of h (McIntyre 1972) based on small obstacle height', and an expansion in 
powers of N ,  based on the weak stratification limit, namely pot'ential flow over a finite 
obstacle (Baines & Grimshaw 1979). These expansions give mutually consistent 
results, and both indicate that there is no influence of the obstacle sufficiently far 
upstream in the steady state. The solutions obtained are also very similar t>o those 
obtained by use of Long's model (e.g. Miles 1968), which yields a st'eady-state solution 
and employs the assumption that pU2 is independent of height far upstream. The 
three solutions are essentially the same when Nh/Ci is small, their most conspicuous 
feat'ure being the downstream lee wave field. This suggests that the Long's model 
solution is valid over a finite range of Nh/U,  namely 

The value of the upper limit is unknown, but Long's model certainly breaks down 
when Nh/ U exceeds a value at which gravitational instability (resulting in rotors and 
turbulence) occurs in the lee-wave field ; this value depends on the obstacle shape hut 
is of order unity. 
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Partially blocked or --+ 

Supercritical flow 

Partially blocked with lee jump  

Subcritical flow 

Complete blocking 
H = h/do 

FIGURE 1. Hydrostatic single-layer flow over an obstacle. The flow regimes obtained after an 
impulsive start from rest for various values of Fa and H are shown. his  the maximum obstacle height 
and uo is the speed of the obstacle relative to the initial undisturbed stream, which has depth do 
(from Baines & Davies 1980). 

1.2. Hydrostatic single-layer $ow 
Steady-state flow patterns for this system resulting from a start-up from a state of 
rest may be defined in terms of two dimensionless parameters 

where h,,, is the maximum obstacle height, do the initial undisturbed layer depth 
and u,, the obstacle speed relative to the initial undisturbed fluid layer. In  terms of 
these parameters, the types of flows obtained from calculations based on conservation 
of mass and energy in the layer are shown in figure 1. Analytical expressions exist 
for the solid lines and these are given in Baines & Davies (1980). The ‘hydrostatic’ 
assumption for this flow is valid for a sufficiently long obstacle; i t  is probably not 
essential for the general character shown in figure 1, but i t  makes the computation 
very much simpler. The same system of equations is also obtained for the two-layer 
system where the upper layer is infinitely deep and interfacial stress is negligible, 
which gives this example relevance for our discussion of stratified fluids. Some of the 
boundaries of figure 1 have been verified experimentally by Long (1970). 

A glance a t  figure 1 shows that over most of the (Fo, H)-plane the obstacle generates 
substantial upstream motions which propagate to upstream infinity in an inviscid 
system (i.e. inviscid except for dissipation in the bore). Furthermore, the boundary 
of this region (F’A’B‘ or E’A’B’) touches the line H = 0 tangentially a t  Fo = 1, 
implying that nonlinear effects are significant a t  small obstacle heights over a broad 
range of Froude numbers. This upstream motion is nonlinear in both its generation 
and its propagation (in practice it has a bore-type structure). A linear perturbation 
expansion in obstacle height can describe subcritical or supercritical flow (Stoker 
1953), but i t  breaks down as the curve F’A’B’ (or E’A’B’) is reached, and this is a 
very small region of validity when Fo is near unity. This breakdown occurs because 
the obstacle speed approaches the long-wave speed, resulting in a resonant growth 
of disturbance amplitude. The region FA’E’ where the flow may be either supercritical, 
or partially blocked with an upstream bore, has been verified numerically by Pratt  
(1983) and also experimentally (private communication), and i t  is discussed further 
below. 
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Subcritical for mode n = 1 

Supercritical for modes n = 2, 3 ,  

Similar structure for 
higher modes 

. .  

FIGURE 2 .  Constant-N stratified flow over a long obstacle. This figure parallels figure 1 ,  but has 
been drawn from observations (figure 6(u) of Baines 1 9 7 9 ~ )  with one particular obstacle. u,, is the 
towing speed, N the Brunt-Vaisala frequency, h the maximum obstacle height and D the total 
depth. The solid line in the flow denotes a representative streamline. 

1.3. U ,  N constant with height in $fluid of Jinuite depth 

This system also exhibits upstream influence in some parameter ranges, but unlike 
the previous examples no comprehensive theory describing the observed motion yet 
exists. The character of the flow has been determined experimentally for some 
obstacles, however, and results for a fairly long obstacle are shown in figure 2 (adapted 
and simplified from figure 6(a )  of Baines 1 9 7 9 ~ ) .  This diagram is analogous to  
figure 1 ,  and the flow is defined in terms of the dimensionless parameters 

The position of the boundary A’B’ depends on the obstacle shape, but the same type 
of behaviour is found for both long and short obstacles. Here the upstream motion 
is linear in character, but the generation over the obstacle is nonlinear. As for the 
single-layer case, linear perturbation theory can describe sub- and supercritical flow, 
but the solution is singular for Fo = l/integer. 

1.4. Inferences 

From the above rather limited special cases we may hypothesize that the presence 
or otherwise of ‘upstream influence ’ for general (initial undisturbed) profiles U ( z ) ,  
N ( z )  over a finite range of obstacle height 0 < h < h, depends on the following: 

(i) the presence of vertically trapped long wave modes a t  zero (or very low) 
frequency and wavenumber; and 

(ii) the relative motion of the obstacle should be such that one of these trapped 
modes is forced a t  or near its long-wave resonance. 
The details of the response and the value of h, will depend on the profiles U(z) and 
X(z ) .  The reason for this behaviour may be readily understood in terms of linear-wave 
theory : long internal waves (wavenumber k+O)  have flat dispersion curves c(k) ,  
where c is the wave phase speed, so that  the group velocity is equal to the phase 
velocity. Waves forced by an obstacle moving a t  this speed therefore have zero 
relative group velocity, and the energy may accumulate until nonlinear effects 
become important. These nonlinearities in the vicinity of the obstacle may then result 
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in upstream motions. I n  the first example above there is no such vertically trapped 
mode ; in the second there is one, and in the third an infinite number. 

The studies described in this paper are directed towards this general problem. They 
add a fourth example to the above list of cases where the upstream motion has been 
studied, namely two-layer flows of finite total depth, with a wide range of layer depth 
ratios. Laboratory studies of this system were first carried out by Long (1954), who 
showed examples of the various types of phenomena which can occur, and described 
some theoretical results for certain cases - most notably the criteria for the 
subcritical/partially-blocked flow boundary. Quantitative observations of the same 
system were made by Long (1974), where the upstream bore speed and height and the 
fluid depth over the obstacle were compared with theoretical predictions. In  these 
studies the lower layer comprised 20% of the total depth and the density ratio s 
was 0.9. 

The only other systematic two-layer topographic experiments known to the author 
are those of Smith (1976), who measured lee-wave amplitudes but did not investigate 
upstream effects. 

Houghton & Isaacson (1970) have carried out a time-dependent numerical study of 
hydrostatic two-layer flow over an obstacle, for the case where the two layers were 
of equal depth with a density ratio of 0.8, and the upper layer was bounded by a 
free surface. Following a larger number of numerical integrations with different initial 
conditions, a fairly complete description of flow types in terms of the two dimensionless 
parameters (a Froude number and a scaled obstacle height) was given, and some novel 
and interesting flow features were obtained. In  particular, the upstream motion 
consisted of internal ' rarefactions ' rather than internal bores. Interesting as these 
results are, it is not clear how they relate to those of the single-layer system or to 
systems with other layer-depth ratios. Also there are some puzzling aspects - in one 
flow regime unsteady flow persists just upstream of the obstacle, so that the flow does 
not asymptote to steady state for large times. 

Keady (1971) has calculated upstream disturbances in two-layer systems, 
extending a method developed by Benjamin (1970), but his results are for small 
disturbance amplitudes and subcritical flows, and involve a number of assumptions. 
In  particular, they assume that the lee-side disturbance is dominated by a lee-wave 
train, and this renders the procedure inapplicable to hydrostatic (or nearly hydro- 
static) flows. 

Apart from the preceding discussion, a direct motive for this study of a two-layer 
system was to attempt to relate the results of figures 1 and 2. One may expect that  
a two-layer system with a very shallow lower layer would behave in a similar manner 
to a single-layer system, whereas a two-layer system with layers of approximately 
equal depth would behave in a manner similar to that of the continuously stratified 
fluid of finite depth, when only the lowest mode of the latter is significant. The latter 
analogy is expected because the effects of wave dispersion and nonlinear steepening 
are similar for the two systems. 

This paper is primarily concerned with two-layer systems. I n  a study of a con- 
tinuously stratified system, McIntyre (1972) showed that some weak upstream effects 
may be generated in lee-wave tails under certain circumstances. These effects are not 
relevant to the present discussion because they have twice the vertical mode number 
of the generating lee waves, and hence are not present in a system with only one 
vertical internal mode. 

In  the following sections, experiments with an obstacle towed through a two-layer 
system consisting of kerosene and water are described, and, guided by the observations, 
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we develop a hydrostatic two-layer model to explain and quantify the results. 
Although the system has a free surface, towing speeds are low so that the external 
or surface mode is always subcritical, and attention is focused on the internal mode. 
The results are therefore applicable (with minor modifications) to any system where 
the internal mode is the only important one, including in particular the system with 
two rigid boundaries. Several phenomena are observed which have not previously 
been described in any detail. Emphasis has been placed on a complete description 
of the upstream motions. Nearly all the observed features have been explained in a 
qualitative sense, and good quantitative agreement has been obtained in many cases. 

The plan of the paper is as follows. The experiments are described in $2, together 
with a general description of the various flow types observed upstream and over the 
obstacle. I n  $ 3  the hydrostatic theory for the motion is detailed, particularly the 
equations for the upstream jumps and rarefactions. I n  $4 the character of the 
upstream jumps, which take the form of undular or turbulent internal bores, is 
described in detail, and expressed in terms of a balance between nonlinear steepening, 
wave dispersion and interfacial friction. I n  $5 the variation of the upstream flow 
properties with obstacle height are discussed, together with the relation of these 
observations to the work of Houghton & Isaacson (1970), and the observed criteria 
for the existence of multiple states and hysteresis in the flow. Hydraulic drops and 
other downstream phenomena are described in 96, and the conclusions are summarized 
and discussed in 97.  Possible implications for atmospheric flows are presented. 

2. Experimental apparatus and observations 
The experimental arrangement and procedures were similar to those of Baines 

( 1 9 7 9 ~ ) .  The experiments were carried out in a transparent tank of length 9.17 m 
and internal width 0.23 m. The tank was filled to  a predetermined depth with fresh 
water (density 1.0 g emp3) and this was then surmounted by a layer of kerosene 
(density 0.79 g cmp3). The experimental layout is shown in figure 3. A two-dimensional 
obstacle, which spanned the width of the tank and was supported from above the 
fluids, protruded downwards below the air-kerosene interface and was towed along 
the tank a t  constant speed. The resultant flow was observed by two stationary 
cameras, placed a t  points upstream, which took instantancous pictures of the motion 
a t  regular intervals. The presence of clocks in the pictures enabled the time history 
of the flow to be recorded, and quantitative measurements were made from these 
prints. The start-up was relatively abrupt, with maximum (constant) speed being 
attained after a distance of less than 1 metre, and this speed was controlled with an 
accuracy of 1 %. Two obstacle shapes were used, as given in table 1 .  Obstacle M1 
was used for most runs; its small aspect ratio gave reasonable confidenee that the 
local flow was approximately hydrostatic, and this is supported by comparison with 
the theory and the observed absence of lee waves. M2 was used where larger obstacles 
were required. I n  both cases the effective (i.e. as perceived by the fluid) obstacle height 
was varied by changing the depth of immersion of the obstacle; this resulted in a 
small degree of variation in the effective obstacle shape, which would have a negligible 
effect for M1. Apart from the position of the obstacle itself, the only data recorded 
by the cameras were the positions of the interface and free surface. From this 
information layer-averaged velocities were inferred. 

For reasons of economy and convenience, kerosene and water were chosen as the 
two most suitable working fluids. The experimental arrangement described above was 
chosen in preference to  one in which the obstacle was towed along the bottom of the 
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Finish Start 

B 
Camera 1 

5 
Camera 2 

FIGURE 3. Schematic side view of experimental layout. 

Obstacle Height Length 
number h 2a Shape 

M1 2.6 cm 55.0 cm Semi-ellipse 
M2 6.0 cm 4.95 cm ‘Witch of Agnesi’ 

ha2 
2 2  + a2 z = -  

TABLE 1 

tank (as in previous studies) for the following reasons. With the obstacle on the 
bottom, a thin lower water layer would require a large amount of kerosene for the 
upper layer, which would be logistically awkward and probably make the laboratory 
an unpleasant place to work in for a substantial period of time. The alternative 
arrangement of a thin kerosene layer and a suspended obstacle is dynamically very 
similar provided that the motion of the air-kerosene interface is very small. This 
implies that  the obstacle motion should be subcritical with respect to  the external 
mode of the two-fluid system, and this limits the range of obstacle towing speeds and 
heights, if one aims to model the rigid lid system. I n  fact, as shown below ($3, figure 
9), the small differences between the two systems are interesting and instructive. 

I n  this paper we are primarily concerned with the flow upstream and over the 
obstacle; the flow downstream may generally be inferred if these are known, and its 
discussion will be postponed to $6. The various flow types observed in these 
experiments are shown in figure 4;  numbers refer to the flow state upstream, and 
letters refer to the type of flow over the obstacle. The explanations of, and 
justifications for, the terminology are given in the succeeding sections. Type 1 A 
denotes flow which is everywhere subcritical, and type 2B denotes flow which is 
everywhere supercritical. We define these terms to mean that the local Froude number 
(the obstacle towing speed u,, divided by the local linear interfacial long-wave speed) 
is either less-than or greater-than unity. I n  the subcritical case the flow upstream 
of the obstacle is not affected by the latter part from transients, as for single-layer 
flow ; on the downstream side, again only transient disturbances are present if the 
flow is hydrostatic (i.e. the obstacle is sufficiently long and smooth) - if the flow is 
not hydrostatic, lee waves may occur in the subcritical case. 

For the situations where permanent upstream effects are present in the steady 
state, three types of upstream motion (numbered 3, 4 and 5 )  were observed. Type 3 
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1A I 
Subcritical 

I 

Rarefaction 

3 

Bore 

1 I I 

Super- 
critical 

c 

FIGURE 4. The various flow types observed in these experiments. Numbers refer to the type of flow 
upstream and letters refer to flow type over the obstacle. In  the upstream types a distinction is 
made between sub- and supercritical flow. 

denotes an internal bore, which was generally undular in character, although a t  
large amplitudes the undulations were partly turbulent. Type 4 denotes a ‘limiting’ 
bore without undulations or energy loss, followed by a gradual increase in the 
upper-layer depth which is interpreted as a ‘rarefaction’, and type 5 is a pure 
rarefaction. If the layer containing the obstacle is the thinner of the two, then when 
the obstacle height is increased the upstream disturbance initially has the form of 
an undular bore; as the obstacle height is increased further the bore amplitude 
increases until the point is reached where its energy loss falls to zero and the bore 
takes on a limiting monotonic form without undulations. This bore travels a t  the 
maximum speed of any (internal) upstream disturbance. If the obstacle height is 
increased further so that the upstream disturbance is also increased, this added 
disturbance travels a t  a speed which is slower than the limiting bore ; further increases 
in amplitude travel progressively slower still, so that this part of the upstream 
disturbance is continuaIIy extended with time and is termed a ‘rarefaction’. The 
terminology is borrowed from the analogous situation in gasdynamics. Whether 
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undular or partially turbulent, the bores propagate without changing shape, whereas 
the rarefactions become increasingly extended and flattened as time progresses. 

With these upstream flow types there are also three associated types of motion over 
the obstacle, denoted C, D and E. For type C the flow is critical a t  the obstacle crest, 
passing from sub- to supercritical; for type D the upper layer is totally blocked, and 
for type E the flow is supercritical and symmetric a t  the obstacle crest and passes 
through a hydraulic drop to another supercritical state on the lee side. Any of the 
three upstream flow types 3-5 may be combined with any of the three states over the 
obstacle, with the exception of 3E and 3F. In  addition, there is also the state which 
we may term type 2F, where the flow is supercritical upstream so that there is no 
upstream disturbance, but a hydraulic drop occurs on the lee side. 

Flow types 1 A, 2B, 3C and 3D occur with single-layer flows. We now give some 
examples of the flow types that are peculiar to the two-layer case. The most suitable 
way of specifying the flow parameters is in terms of the values a t  the initial state. 
We define D and d,, (d one-zero) to be the undisturbed total depth and upper kerosene 
layer depth respectively, h the maximum depth of penetration of the obstacle below 
the undisturbed air-kerosene interface, and u, the towing speed of the obstacle. We 
then define 

where A p  = p2-p1, and p1 and p2 are the densities of the upper and lower layers 
respectively.? Long (1954) has presented examples of flow types 1 and 2 and states 
C, D and E over the obstacle, for two immiscible fluids with s = 0.975 (here s = 0.79). 
Here we show some examples for the present system which demonstrate the character 
of the upstream states. Figure 5 (a )  shows an example of flow type 3C, with a laminar 
undular bore upstream and the flow passing through a critical state over the obstacle. 
As time evolves the bore is observed to move further ahead of the obstacle as new 
wave crests appear a t  the latter. As one moves rearward from the head of the bore 
and the wave amplitude decreases because of dissipation (see §4), so that eventually 
the interface immediately upstream of the obstacle is nearly horizontal, with steady 
flow and an increased upper-layer depth. Figure 5 (b) shows another example of type 
3C where the obstacle velocity is larger than in 5 ( a )  so that the bore speed and 
amplitude are larger, resulting in a partly turbulent internal bore. Figures 5 (c) and 
( d )  show a deeper upper layer with types 4 A  and 4 C  respectively; both have a 
‘limiting’ bore upstream followed by a rarefaction. I n  5(c) the flow passes through 
a critical state over the obstacle, whereas with the higher speed in 5 ( d )  the critical 
state is not possible and the flow passes instead through a (mostly) laminar hydraulic 
drop on the lee side of the obstacle. 

3. Hydrostatic theory 
Guided by the observations described above, we develop a model for the fluid 

motion which is based on the assumption that the flow is predominantly hydrostatic, 
except for various postulated phenomena such as hydraulic jumps (or bores), drops, 

t The proper Froude number is normally FD = u o / e ,  where e is the upstream wave speed ; however, 
the present system has a free surface upstream but a rigid upper surface under the obstacle. This 
difference introduces complications which are discussed in $3.  Here we compromise and choose PI,, 
because of its simplicity. 
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and rarefactions. Simple consideration of the equations of motion shows that, apart 
from ‘discontinuous’ phenomena such as jumps and drops, the flow will be hydrostatic 
if the forcing (in this case the obstacle) is sufficiently long and smooth so that 
horizontal scales are much greater than vertical scales. Although most features of the 
model are not new, the presentation given here is more unified and complete than 
previous versions, and incorporates the details of the particular system used in the 
experiments. 

Equations for the two-dimensional flow of n layers where the ith layer has density 
pi,  horizontal velocity ui and thickness di ,  may be written 

wu u.L 

( i  = 1, ..., n) ,  
au. 1 +u.- = --_ 

at a ax pi ax 

(3.1 a )  

(3 . lb )  

where the overbar denotes a vertical average in the layer, ui is independent of z in 
each layer, p denotes pressure and z is the elevation above the tank floor. At any 
given point within the ith layer in a hydrostatic flow we have 

i-1 n+i 

p ( x , z , t )  =ps+g c Pjdj+gPi x d j - z  , (3.2) 
j=1 Li 1 

where p ,  denotes the pressure above the topmost layer; the layers are numbered 
downward, and dn+l (x )  denotes a possible lower obstacle (d,,, = 0 for a flat surface). 
For two layers with a horizontal lower surface the equations of motion become 

-+- 
at ax 

4 + 4 ( 1 u : + g ~ d l + d , ) + ~ )  at ax = 0. J 
If the uppermost layer has a free upper surface we may take 

p ,  = 0. (3.4) 

If instead i t  has a rigid surface we have 

d, +d, = D- h(x), (3.5) 

where D is the initial undisturbed total depth and h is the penetration of the obstacle 
below this depth. Here p ,  may be eliminated from (3.3) by subtraction, so that in 
each case we have four equations for the variables ul, d,, u2 and d,. 

The above equations may be integrated numerically, and this has been done for 
some cases by Houghton & Isaacson (1970). The process is complicated by the fact 
that discontinuities in the form of hydraulic jumps develop in the flow, and jump 
conditions must be invoked in order to continue the solutions beyond the times a t  
which these occur. Here we adopt instead the simpler procedure of looking for ‘ steady ’ 
solutions which have the jump structure suggested by the experiments, following 
Houghton & Isaacson and Long (1970, 1974). 

Flow types 1 A and 2B involve no jumps and are relatively simple. The notation 
for type 3 C  is shown in figure 6, and this flow involves an upstream ‘jump’. In  these 
experiments these jumps take the form of turbulent or undular laminar bores, and 
they are discussed in detail in $4. In cvcry observed case for both types of bore, 
variations in interface height decreased downstream from the bore front, so that (after 
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6' 

FIGURE 6. Notation for flow types 3C, with axes fixed relative to the obstacle. 
c1 denotes bore speed directed upstream. 

sufficient time) the bore resulted in a change from one horizontal flow state to another. 
For present purposes, a study of the detailed mechanics of such jumps may be 
circumvented by making simple assumptions about their dynamics, in order to obtain 
a relationship between the jump speed and its amplitude. The principal assumption 
is that the bore propagates along without changing shape. One equation relating 
conditions across the jump may be obtained from conservation of total momentum 
expressed as the flow force, i.e. 

( p  +pu2) dz = constant, (3.6) 

in the frame of reference moving with the jump, where s'(x) is the displacement of 
the upper free surface from its upstream position. This equation is valid regardless 
of the nature of the jump, provided that viscous stresses on the tank floor are 
negligible. Applying (3.6) across the jump and using the notation defined by 
figure 6, we obtain 

JOD+# 

= (dl1 - 4 0 )  { ( P z  - P J  4 0  - 3 P 2  -P,) (dl1 - 4 0 )  +PZ s'} 

-s '~P,d, ,  +PZd,O+iPZd')> (3.7) 
where uo and c ,  are both positive. This is an equation relating c , ,  d,, and s', and will 
apply for all jumps regardless of processes a t  the interface. To obtain speed c1 as a 
function of jump height d,, we need an additional equation. If we assume (i) 
tangential interfacial stresses (turbulent and viscous) in the jump are negligible and 
(ii) flow iq the jump is hydrostatic, and consider the momentum equation for the upper 
layer alone, we may obtain from (3.1) and (3.2) (e.g. Xu 1976) 

downstream ad 

upstream ax 
d , L d x .  (3.8) 

For the flows studied in this paper the free-surface displacement 6' will be small 
compared with the interfacial displacement and, if we also assume that (iii) 6' is 
proportional to the interfacial displacement d,, -dl0, it  follows that 

s ~ 1 1 ~ ~ 1 1 + ~ 1 ~ 2 - ~ 1 0 ~ ~ 0 + ~ 1 ~ 2 + ~ ~ ~ ~ ~ 1 - ~ ~ 0 ~  = --9 

downstream ad 
d, $dx = (d,, +d,,) 8'- (d i l -d;o) .  s upstream cx 

Equations (3.7)-(3.9) provide a relationship between c1 and dll. 

(3.9) 
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The assumptions (i)-(iii) are equivalent to those made by Yih & Guha (1955), 
Houghton & Isaacson (1970), Long (1970,1974) and Su (1976). Chu & Baddour (1977) 
and Wood & Simpson (1984) have queried the validity of these assumptions because 
they imply that the contracting layer gains energy without associated work being 
done on it. They suggested that instead of (3.8) a conservation-of-energy equation 
be used for the contracting layer (the lower one in the present case), since little mixing 
is observed in this layer. The results obtained by using this assumption are very 
similar to those obtained from (3.7)-(3.9) over the range of parameters for which 
experimental observations were made (differences were less than 3 yo), and the 
observations could not distinguish between them. We will use (3.7)-(3.9) here. 

If we define 

(3.10) 

(3.7)-(3.9) may be written 
R - 1  

(2 -r ( l+R-6) )  (1-rR+r6) 
R(R+ 1 )  

(Flo+I‘)2 (r(1 - r )  (R- 1-6) + 
r( 1 - s )  (R - 1 ) Z  

R(R+ 1)  
- (3  - r - 2rR + r6) 

= s (R-1 ) ( i - rR) ( l - [ r ( l+R)]} ,  (3.11) 

2 ( 1 - ~ )  (R- 1 )  
(FlO + Q Z .  sR(R+ 1 )  

S =  (3.12) 

These equations specify a unique jump speed as a function of its height. This 
relationship shown in figure 7 for various Sr-values, where the ordinate is the actual 
jump speed uo+c,  divided by co, the speed of long small-amplitude waves in this 
two-layer system with a free surface. co is given by 

ci = +gD{l- (1  - 4 ( l - s )  r( l  - r ) ) i } ,  (3.13) 

and we have uo+cl- tco as dll+dlo, (3.14) 

i.e. infinitesimal jumps travel a t  the linear long-wave speed. 
Although jumps conserve momentum they involve a loss of energy between the 

upstream and downstream states. Mechanisms for this energy loss are discussed in 
the next section. The rate of energy loss in the jump may be readily calculated from 
(3.1) and (3.2) and is given by (e.g. Su 1976) 

9 = energy flux downstream - energy flux upstream 
dt 

where EJ denotes the energy in a region of fluid containing the jump, 

e(x) = - 
x3 

( l + x ) Z ( 2 + x ) ’  

(3.15) 

(3.16) 
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R 
FIGURE 7 .  Bore speed as a function of height from (3.1 1 )  and (3.12) expressed in terms of the linear 

long-wave speed co (3.13). The marks denote the points at which energy loss dE,/dt = 0. 

and for the above jump solutions to be valid we require 

d E J < O .  
dt 

(3.17) 

For each curve shown in figure 7 this condition is satisfied to the left of the symbol, 
which is just to  the left of the peak of the curve. Hence the jump solutions are only 
possible on the rising branch of each curve. 

For the assumed flow state 3C as depicted in figure 6, the flow downstream of the 
jump will be steady in a frame of reference moving with the obstacle. Accordingly, 
from (3.3) Bernoulli equations for each layer may be obtained in the form 

I P 
P1 

@;+g(d,+d,)+" = const = ~ ~ ~ ~ + g ( d , , + d , , ) ,  

(3.18) 
= const = +uil+g 

When the fluid is beneath the obstacle we have 

u1 = ull-, dl 1 u2 = uZ1-,  dZ1 d ,  = D - h ( z ) - d , .  (3.19) 
dl d2 

Subtracting to  eliminate the pressure p,, we obtain 

= ~ P z u ~ l - ~ P l U ~ 1 + 9 ( P z - P l )  4 1 7  (3.20) 

where all terms are constants apart from d , ( z )  and h(z).  Differentiating with respect 
to  z then gives 

(3.21) 
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Hence, where dhldx = 0 (i.e. a t  the obstacle crest) we must have either 

or 

(3.22) 

(3.23) 

where d, satisfying (3.23) is denoted by d,,. Equation (3.22) applies for flow 
types 1A and 2 B  (subcritical and supercritical flow, where d,, = d,,), and (3.23) 
applies for type 3C. Equation (3.23) is equivalent to the statement that a local Froude 
number defined by 

F = % = 1  r -  (3.24) 
cr 

where c, is the linear long-wave speed in the two-layer shear flow between rigid 
boundaries. If we define 

(3.25) 

(3.20) and (3.23) may be written 

I-rH-rR, 

= H+R,-R+S, (3.26) 

(3.27) 
1 (F1 ,+0(1 -r )  (1-rR+r8)2r Fl,+T 
i{ l - r R + r 8  (1  - r H - r R , ) 3  +(+rj2$ = 1 .  

Equations (3.11), (3.12), (3.26) and (3.27) may be solved simultaneously to yield T ,  
R and R, as functions of F,, and H, for flow type 3C. Flow type 3 D  is demarcated 
by the line R, = 0; the boundaries of regions 1A and 2 B  are given (in part) by (3.26) 
and (3.27), but with the upstream jump absent, so that in these equations R = 1 ,  
s = 0, r = 0. 

I n  the region of blocked flow of the upper layer we have 

u11 = 0, 
so that, from continuity, 

F,,+T = TR. 

(3.28) 

(3.29) 

R and r a r e  given by (3.11), (3.12) and (3.29), and are independent of H. 
Regions in the (Flo, H)-plane where the various flow types of figure 4 may be found, 

according to this theoretical model, are shown in figure 8 for various values of r .  The 
pattern of curves for small r resembles that for r = 0, as expected. Because of the 
hybrid nature of the system under study here, the curves denoting the limit of 
subcritical flow (type 1 A) and the onset of type 3 C flow are not quite coincident. The 
difference is very small, and the structure near point A’ is actually as shown in 
figure 9, for values of r up to r z 0.35. This difference occurs because the upper 
surface is free except a t  the obstacle, where it is rigid. The nature of the flow in the 
various regions is fairly obvious except in the region a‘c’d‘, where i t  presumably 
has the character shown in the inset - a bore develops on the forward face of the 
obstacle but cannot propagate upstream. The regions a‘c’d’ and b’c‘e’ are both too 
small to be identified in these experiments, and we will ignore their presence in the rest 
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FIGURE 8. Flow-regime diagrams in terms of F, and H for various values of r. The dashed lines 
represent approximate locations of the boundaries, and the two arrows on the ordinate axis denote 
the points a' and b' of figure 9. 

of this paper. It should be noted, however, that i t  would be quite a simple matter 
to construct a system in which these regions are significant. 

In  figure 8 ( a )  the lower boundary of supercritical flow is given by curve A'E'G. 
A ' E  is given by (3.26) and (3.27) with R = 1, 6 = r = 0, and the solution to these 
equations has a second branch which meets A'E' in a cusp at E (see Long 1954, 
figure 22). This second branch has larger values of R, than does A'E,  and is not 
physically relevant. If we denote the Froude numbers at A' and E' by FA, and FE, 
respectively, for flows with FA# < F,, < FEr the flow may be supercritical if H is to 
the left of A'E.  For F,, > FE, the flow will remain supercritical regardless of the 
height of the obstacle; hence the boundary E G  is horizontal at F,, = FEf.  As for 
single-layer flows, both supercritical and partially blocked flows are possible between 
curves A'D' and A'E'; this region is discussed further in $5.  

On the subcritical boundary A ' B  we have R = 1 and dE,/dt = 0. As F and/or H 
increase above this line the energy loss across the jump at first increases, and then 
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FIGURE 9. Schematic detailed structure of figures 8(a-d)  near point A'. 

I I 

FIGURE 10. Notation for flow types 4 C  and 5C,  with axes fixed relative to the obstacle. 

decreases to zero as the line D'C' is reached. Beyond this line state 3C is no longer 
possible because the assumed upstream jump will not satisfy the energy criterion. 
Instead, guided by the observations, we assume a model as shown in figure 10, where 
the upstream motion consists of a (possible) upstream jump with dE,/dt = 0, 
followed by a time-dependent rarefaction region. I n  the latter, the leading part of 
the rarefaction travels faster than the trailing part, so that this region becomes 
increasingly extended as time progresses. For larger values of r (e.g. r = 0.5) the initial 
zero-energy-loss jump may be absent. 

I n  order to calculate the properties of flow types 4C,  4D,  5C, 5D we first make 
use of the theory of hyperbolic equations and simple waves (Houghton & Isaacson 
1970) to relate conditions across the rarefaction. Equations ( 3 . 1 ~ )  and (3.3) may be 
written 

ut + cu, = 0 ,  (3.30) 
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where suffixes x and t denote derivatives, and 

The roots A,(x, t), i = 1, . . . , 4  of the characteristic equation of the matrix C 

det (C-A/) = 0, (3.32) 

where /is the identity matrix, determine the characteristic curves x = x(t) as solutions 
Of 

dx 
dt 
- = &(x, t)  (i = 1, ..., 4). (3.33) 

These A, are the linear wave speeds for given u,, u,, d, and d,. If these are ordered 
so that 

A, < A, d A, < A,, 

A, and A, represent surface or external waves, and A, and A, the internal waves. A, 
is negative and denotes the velocity of an internal wave moving to the left. Equation 
(3.32) becomes 

( 1 - i1",l2) ( ( 1 - s j gd, d, - d, ( A  - u , ) ~ )  - sd, ( A  - u1 ), = 0. (3.34) 

On a characteristic x = x(t) we may write 

(3.35) 
d 

ir r-u(x(t) , t)  = U x A i - t U t ,  
dt 

which with (3.30) becomes 

(C-A,/) u, = b. (3.36) 

Each component of the vector B is therefore a linear combination of the components 
of the vector u,. Hence we may obtain relationships between the variables by 
replacing the fourth (or any other) column of C-A,/ by b and equating the 
determinant of the resulting matrix to zero. Our object is to relate conditions 
downstream of the rarefaction to those upstream, and the rarefaction or expansion 
may be regarded as a simple wave (i.e. a disturbance moving into uniform conditions 
and propagating on one family of characteristics only) behind the zero-energy-loss 
jump. The simple wave propagates along the characteristics dxldt = A, ; accordingly 
the other families of characteristics relate conditions across this wave, and we obtain 

A,)"ggd,) 0 (i = 1 , 3 , 4 )  (3.37) 
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on dz/dt = A,. With reference to  figure 10, if we define 

145 

and take R, as the independent variable, (3.37) may be written 

From (3.34) the rk are given by 

(3.40) 

Equation (3.39) may be integrated across the rarefaction to give V,, V, and R, as 
functions of R,. The relations so obtained are analogous to Riemann invariants in a 
single-layer system. To complete the system, the equation relating conditions 
downstream of the rarefaction to  conditions a t  the obstacle crest, and the equation 
for the critical condition at the crest are required (corresponding to (3.26) and (3.27) 
respectively), and these are 

1 V2,R2, V;  Ri 
- 3+-= 1 

(+-H-R.) R: 
(3.42) 

In  summary, to establish the flow field of figure 10 for given F,, and H, we need 
to (i) solve for the limiting (dE,/dt = 0) jump with (3.11) and (3.12) if i t  is present; 
(ii) integrate the differential equations (3.39) to obtain V,, V ,  and R, as functions of 
R,, and then (iii) solve these equations simultaneously with (3.41) and (3.42) to obtain 
R, and R,. This has been done for all the values of r shown in figure 8. 

As F,, and/or H are increased further so that the upstream disturbance is increased, 
a point is reached where this motion becomes just critical immediately upstream of 
the obstacle. This gives the maximum upstream disturbance possible, and i t  is not 
altered by further increases in F,, and/or H .  With critical flow just upstream, the 
flow over the obstacle must now be supercritical; the critical condition (3.24) cannot 
be satisfied, and the flow at the obstacle crest satisfies (3.22). From observations, the 
flow then adjusts to downstream reality by passing through a hydraulic drop on the 
lee side of the obstacle, giving flow types 4E, 5E and also 2F. The calculation of 
flow parameters in these regimes is substantially more complicated than for those 
described above, since i t  is now necessary to solve for the complete time-dependent 
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flow (i.e. downstream as well as upstream), utilizing the appropriate relations across 
downstream jumps, drops and rarefactions, and the original conditions far down- 
stream. This has been done for a single-layer flow by Houghton & Kasahara (1969), 
but is not attempted here. The properties of hydraulic drops are discussed in more 
detail in $6. 

4. Upstream jumps and undular bores 
Upstream jumps, frequently in the form of undular bores, are common features 

of these flows, and in many cases the upstream bore is the most conspicuous 
phenomenon present. In  this section we discuss the properties of these internal bores 
per se, before we proceed in $ 5  to a comparison between the overall properties of the 
observed flows and the theory of $3. 

Examples of the types of bores observed are shown in figures 5 (a ,  b )  and 1 1 .  For 
all values of r for which bores were found (0.035, 0.1, 0.2. 0.35), for sufficiently small 
amplitudes the bore was wholly laminar (e.g. figure l l b ) .  For r = 0.035, 0.1 and 0.2 
a train of waves with amplitude decreasing monotonically to zero downstream (at 
the new interface elevation) was evident downstream of the bore front. The 
amplitudes of these wavetrains generally decreased as r increased, and the waves 
were barely discernible for r = 0.35. I n  all experiments this pattern of waves appeared 
to be steady, once i t  was established, and no variation in bore speed could be detected 
within 1 yo. For r = 0.035,O.l and 0.2, the bore amplitude, speed and wave amplitude 
all increased with increasing R, until a point was reached where turbulence appeared a t  
the interface. This instability first occurred on the leeside of the first wave ‘crest’ and 
is evident in figure 5 ( a ) ,  where it is marginally turbulent. At larger amplitudes the 
turbulent region extended from the ‘crest ’ down the whole leeside of the first wave, 
tended to become laminar again on the forward face of the second wave, was turbulent 
again on the leeside and so on, decreasing with the wave amplitude (figure 5 b ,  11 a ) .  
At even larger amplitudes the flow behind the leading crest became fully turbulent 
(figure 1 1  c), and the flow resembled a gravity current with the initial wave crest as 
the gravity current head ; subsequent waves were barely distinguishable. I n  all cases, 
however, the forward face of the bore was always laminar. For r = 0.35 no turbulence 
was observed, and the bore mainly consisted of a forward face which propagated 
without discernible change in shape. 

Figure 12 shows the observed bore propagation speeds (c /c ,  or F+T)  versus bore 
height R- 1 for r = 0.035,0.1,0.2 and 0.35, together with the theoretical curves from 
(3.11). The bores are observed to move a t  slightly slower speeds than those expected 
from the inviscid hydrostatic theory. For r = 0.035, 0.1 and 0.2, the point a t  which 
the bore changes from laminar to  ‘turbulent ’ is marked ; beyond this point the bore 
speed increases more slowly with R than for the laminar bores, and for r = 0.1, 0.2 
there appeared to be almost no increase a t  all. 

Long (1974) described experiments with r = 0.2, s = 0.9, where asimilardiscrepancy 
was found between these theoretical bore speeds and the observed ones, over a range 
of R-values. Yih & Guha (1955) reported observations of bores between two 
immiscible fluids where one layer was at rest relative to  the bore, or both layers had 
the same velocity downstream of i t .  Because of the different situations it is not 
possible to make a direct comparison between their results and those described here, 
but a similar discrepancy between the hydrostatic theory and observation was 
reported. 

Although internal bores are quite common in geophysical flows, to my knowledge 
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FIGURE 12. Bore speeds as a function of jump height - a comparison between hydrostatic theory 
and observations. (a )  r = 0.035; (b )  0.1; (c) 0.2, 0.35, 0.5. Asterisks denote the points where 
dE,/dt = 0. The dashed lines denote the observed boundaries between laminar and turbulent 
upstream motion. For r = 0.5 the upstream motiom is not a bore, but the points denote the 
observed speed. 



Two-layer $ow over topography 149 

_----- 

- u ,  h 1  

+r h2 - u2 

FIGURE 13. Schematic diagram of a laminar bore in a single-layer system. 

detailed laboratory observations of them have not previously been described in the 
literature, and we next discuss the reasons for their observed character. The nature 
of bores in the simpler single-layer system has received much more study than the 
more complex two-layer system, but even now single-layer (free-surface) bores are 
not completely understood. Before discussing two-layer bores, however, we first 
summarize the state of knowledge of single-layer bores. 

Bores in single-layer systems 

We may loosely define a bore as the transition region between one uniform stream 
and another, in a steady state. A typical observed laminar free-surface bore is shown 
schematically in figure 13; the flow pattern is steady and, taking axes moving with 
the bore, the flow upstream is supercritical ( F  = u,/(gh,): > 1) and the flow 
downstream is subcritical ( F  = u,/(gh,)t < 1). Benjamin & Lighthill (1954) have 
shown that bores may be suitably described in terms of the three quantities Q*, R* 
and S*, where Q* is the volume flow rate per unit span, R* is the energy per unit 
mass (i.e. g times the total head) and S* is the flow force (the total momentum flow 
rate (i.e. inluding pressure) per unit span, divided by density). For a uniform stream 
of speed u1 and depth h,, Q*, R* and S* have the forms 

Q* = ulh,, R* = $i+gh,, S* = u;h,+$h;, (4.1) 

which for the case of figure 13 correspond to the upstream values. Benjamin & 
Lighthill show that (in all probability) the values of Q*, R* and S* determine a unique 
train of stationary finite-amplitude gravity waves, specifying implicitly their depth, 
amplitude and wavelength. They also show that inviscid bores, where there is a 
transition from a uniform stream to a wavetrain which has the same values of Q*, 
R* and S*, are not possible - the only possible solution in this case is a solitary wave. 
Peregrine (1966) and Fornberg & Whitham (1978) describe the results of numerical 
studies of the temporal development of inviscid bores from initial states of gradual 
change (Peregrine) and abrupt change (Fornberg & Whitham) from one uniform 
stream to another. These systems evolve into undular bores with oscillations which 
decrease downstream, but steady state is not attained, and these authors conclude 
that in an inviscid system the initial wave crest (which has largest amplitude) 
eventually detaches and propagates ahead as a solitary wave, to be eventually 
succeeded by the second crest, and so on. It appears therefore that the final state 
of the inviscid bore is an unsteady structure resulting in the continuous production 
of a' succession of solitary waves. Peregrine also describes how the undulations are 
formed by pressure effects resulting from the non-hydrostatic components of the flow. 

Inviscid bores do not occur in practice. If a small amount of energy dissipation 
takes place a t  or near the front face of the bore (for example, by turbulence associated 
with a breaking initial wave), R* is decreased but Q* and S* are unchanged in value, 
and a transition from a uniform stream to a finite-amplitude (cnoidal for long waves) 
wavetrain may occur. If instead R* progressively decreases downstream down the 
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wavetrain for some reason, the waves become sinusoidal and their amplitude falls 
to zero. The situation with real bores is, however, slightly different. Sturtevant (1965) 
has shown that, for a bore moving into fluid a t  rest (as in figure 13), R* and S* increase 
as the bore is traversed, because the lower boundary exerts a stress on the deeper 
fluid in the downstream direction (in the frame of the bore). Byatt-Smith (1971) has 
investigated this effect of a bottom viscous boundary layer in some detail, and has 
obtained realistic steady, spatially decaying undular bore solutions. R* and X* both 
increase, and the wave amplitudes decrease, as one moves downstream from the bore 
front. For larger bores the waves may break and bottom boundary layers may become 
turbulent, but the same processes still apply. This then is the general character of 
a bore advancing into still water over a rigid boundary. 

Internal bores in a two-layer system 

This subject is much less well developed than that for single-layer flows. For purely 
hydrostatic flows, the flow of a single active lower layer below an infinitely deep upper 
layer may be described by the same equations as for a single layer per se, if g is replaced 
by gAp/p,. However, for flows with shorter lengthscales, where horizontal gradients 
become important so that the flow is not hydrostatic, we cannot make this 
identification. The above results for single-layer systems are related to the fact that  
small-amplitude long surface waves satisfy the Korteweg-de Vries equation. 
Benjamin (1966) showed that small-amplitude wave motion in a stratified or two- 
layer system where the wavelength was much greater than the total depth was also 
described by a Korteweg-de Vries equation, but that  waves in a system where the 
upper (or lower) layer was infinitely deep satisfy a different equation now known as 
the Benjamin-Ono equation (Benjamin 1967; Ono 1975). The latter has since been 
generalized to fluids of finite total depth, but still with a shallow (layer depth 
3 wavelength) lower or upper layer - the ‘ finite-depth ’ or ‘ intermediate-long-wave ’ 
(ILW) equation (Joseph 1977; Kubota, KO & Dobbs 1978). 

There is currently no known nonlinear equation governing small-amplitude long 
internal waves that is formally valid over the whole range of depths for two-layer 
systems. It also appears that, in circumstances where the ‘finite-depth’ or ILW limit 
is applicable, a slightly different representation of the equation is required to describe 
periodic waves from that for solitary waves (Ablowitz et al. 1982). 

Recent experiments by Koop & Butler (1981) and Segur & Hammack (1982) show 
that, for solitary waves, the Kortewegae Vries equation is more accurate than the 
others in most cases and has the widest range of validity. Although the experiments 
were far from exhaustive, a parameter range for which the Benjamin-Ono equation 
is valid could not be found experimentally, and the range of validity for the finite-depth 
or ILW equation was disappointingly small and for restricted wave amplitudes. These 
conclusions indicate that, for the present purposes, i t  is appropriate to restrict the 
present discussion to the Korteweg-de Vries equation, and we follow the formalism 
of Benjamin (1966). However, we cannot expect this weakly nonlinear theory to apply 
quantitatively to  all of the present experiments because, first, in many cases the bores 
have very large wave amplitudes and, secondly, the wavelength is often comparable 
to the total depth, particularly when r is small. 

For steady flow in a stratified fluid of finite depth we define the total head H* and 
the flow force S* by 

H*(x , z )  = p++(u2+w2)+pqz, (4.2) 
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in the usual notation and in a frame of reference moving with the bore, where the 
integral is through the whole depth ofthe fluid. As for the single-layer case we consider 
the transition from a uniform flow to a periodic wavetrain, and denote the upstream 
conditions by a subscript zero. The rate of loss of energy in a jump or dissipation 
region between x,, and x is given by 

$sIo E d x  = ju (x ,  z )  H*(x,  z )  dz- u(x,, z )  H*(x,,, z )  dz, s (4.4) 

and this quantity is equal to  dE,/dt (3.15) if the jump lies wholly between go and 
x. We express the vertical displacement of streamlines from their upstream levels in 
the form 

c = f(x) #(zL 

where # ( z )  is the vertical eigenfunction for the lowest internal wave mode of infinite 
length. For a two-layer system of total depth D and upper depth d,, with a free 
surface, # ( z )  is given by 

z 
#=- (0 < z < D-d, , ) ,  

D-dl0 

where c, is the linear long wave speed given by (3.13). 

Benjamin (1966) showed that f ( x )  must satisfy 
For a periodic wavetrain with suitably long wavelength and small amplitude, 

# z  = d#/dz, p is the fluid density and 

L = ~ ( ' ( F H * -  C H,* dz-(S*- 83) .  

Here the integrals are again over the total depth, c is the speed of propagation of 
the wavetrain and H,*, 8," denote the upstream values of H * ,  S* respectively. The first 
term in L is the energy-loss term (4.4) divided by the bore speed. 

Equation (4.6) is a nonlinear differential equation of standard type, and the nature 
of its solutions may be inferred from figure 14 (following Benjamin 1966). I and J 
are positive quantities and K is positive for r < 0.513 (for s = 0.79), which covers 
all experimental cases under discussion. Changes in H* and S* only affect L. The cubic 
right-hand side of (4.6) has the form shown for various values of L,  and solutions are 
possible where the function is positive. The flow force S* is constant if there are no 
external forces acting on the fluid. For an internal bore on a shallow upper layer 
moving into fluid a t  rest there will be a slight decrease in S* (below S,") because of 
the stress a t  the bottom boundary acting on the lower layer, which has a net motion 
on the opposite direction to that of the bore after the bore front has passed. I n  the 
present experiments this effect is negligible if r is small, because of the remoteness 
of the lower boundary and the consequent small velocities there. This slight tendency 
to increase L is outweighed by a decrease in uH* dz, because of dissipation of kinetic 
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K f 3 + J f 2 + L  

c 

FIGURE 14. Graphs of the cubic equation tha t  determines the character of the 
solutions of (4.6), for various values of I, (4.8). 

energy at the interface, which reduces SuH*dx but leaves X* unchanged. The 
magnitude of this effect is estimated below for laminar bores, and will be even larger 
for turbulent bores, but for the present we merely note that the net effect results in 
a decrease of L below zero. 

If L = 0, as for a purely inviscid bore, the only relevant solution of (4.6) is one 
representing a solitary wave of depression. This suggests, paralleling the single-layer 
case, that steady-state inviscid bores are not possible in two-layer or stratified 
finite-depth systems, and that attempts to  set up such a bore will result in the 
continuous production of a sequence of solitary waves. This conjecture is far from 
proven, however. If a small decrease in L occurs at the bore front the cubic is lowered 
slightly and (4.6) admits a periodic cnoidal wave solution of large amplitude 
oscillating between the zeros fi and fi. If L slowly decreases as one moves further 
downstream from the front, the waves tend to sinusoidal form and the wave 
amplitude decreases to  zero as fi and f ,  coalesce. Further decrease in L only results 
in adjustments to the parallel flow. The interesting point is that  very small changes 
in L may result in large changes in the wave structure. 

This dynamical picture of the internal bores is qualitatively fully consistent with 
the observations described a t  the beginning of this section. If L decreases to the extent 
that the wave amplitude decreases to zero, the resulting change in interface height 
across the bore is given by 

From this we may obtain the expression 

where R is defined by (3.10), and 

R- 1 = -f/(4, (1 -&)) ' 

(4.10) 

(4.11) 



Two-layer $ow over topography 

We may express (4.10) as 
c 
- = l+a(R-1)+0(R-l)2,  
CO 

where 01 is half the right-hand side of (4.10). Substituting 
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(4.12) 

from (4.5) and evaluating 
gives values for CL which are the same as those from the ‘jump’ model (3.11), as 
expected (Su 1976). 

In  order to complete this description of the mechanics of the observed bores, we 
need to estimate the magnitude of the viscous effects. Interfacial and boundary 
stresses cause a progressive change in L (4.8), which results in a change in the internal 
waves. The calculation of this change in L(x) has been relegated to the Appendix, 
where it is shown that the contribution of the interfacial and other boundary layers 
to L(x) is given approximately by (A 9). The value L that is required in order to 
decrease the amplitude of the waves to zero is that  required to lower the cubic of 
figure 14 from the uppermost curve to the lowest, according to the model of (4.6). 
This value is 

(4.13) 
(R- 1 ) 3  

Equating (4.13) and (A 10) gives 

For R close to unity this relation may be satisfied for decay distances x that are 
comparable to those observed in the laboratory, for all relevant values of r .  Hence 
we may conclude that viscous dissipation at the interface can account for the decrease 
in wave amplitude behind the bore. Note that the waves are not ‘damped’ in the usual 
sense of viscous damping, which applies (for example) to solitary waves. Instead, the 
decrease in wave amplitude is due to the changing character of the wavetrain caused 
by the changing value of L. 

One possibility which could not be dismissed a priori is that the wave amplitude 
decays behind the bore because of an inviscid nonlinear interaction with the mean 
shear. If the flow is potentially unstable via shear instability, i t  is conceivable that 
a forced wave with suitable phase propagation (e.g. the bore undulations) could decay 
and lose its energy to the mean flow - a process that would correspond to a decaying 
eigenfunction with complex frequency. To test this possibility, the inviscid stability 
of the steady two-layer shear flow (uniform density and velocity in each layer) was 
examined, and the results compared with some representative observations. In  every 
such case where an observed undular bore was laminar (see figure 12), the flow was 
found to be theoretically stable to disturbances that had the same wavelength; 
conversely, the flow was theoretically unstable for the same wavelengths as those of 
bores that were observed to  be turbulent. Hence there was no indication of a 
wave-mean-flow interaction decay process other than the obvious one of turbulence 
due to  Kelvin-Helmholtz instability. 

5. Dependence of upstream effects on obstacle height: comparison with 
observations 

I n  this section we compare the results obtained from the theoretical model of $3  
with the observations. In  an overall sense the agreement is quite reasonable; the 
boundaries of the various flow types obtained from the theory agree quite well with 
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FIGURE 15. The curves r = constant, R = constant, giving the speed and amplitude of the upstream 
motion as functions of E;, and H, for r = 0.035. The overall pattern of the diagram is shown in 
figure 4. 

1.8 I I I I I I I I I I I I I I 

H 

FIGURE 16. Same as figure 15 but for r = 0.1. Rcrit denotes the value of R where dE,/dt = 0. 
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FIGURE 
H 

17.  Same as figure 16 but for r = 0.2. The heavy dashed line denotes the upper 
flow states where flow at the obstacle crest is critical. 

1 .o , 1 I 1 

RCrit = 1.38 

' limit of 

H 
FIGURE 18. Same as figure 17 but for r = 0.35. 

the observations, with a few exceptions which are discussed below. We consider the 
flows in order of increasing r .  

From the inviscid equations of $3  the parameters r (relative bore speed) and R 
(bore amplitude) for the upstream motion may be computed as functions of F,, and 
H ,  and these are shown in figures 15-19 for the various values of r (these are the same 
diagrams as in figure 8 but with the added details). For r = 0.035 the pattern of 
R, r curves is very similar to that for the single-layer case ( r  = 0). I n  the regions of 
totally blocked flow of the upper layer, the r, €2 curves are horizontal so that  r a n d  
R are independent of H - once the flow is totally blocked, a taller obstacle makes no 
difference to the upstream motion. At the upper limit of the region of ' pure ' internal 
bores without rarefactions (line EC' of figure 8 b - d )  which is given by the criterion 
dE,/dt = 0 across the upstream jump, the curves r = constant are horizontal, 
reflecting the fact that this criterion is a property of the bore and not the obstacle 

6 h L I 1  148 
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0.2 0.4 0.6 0.8 1.0 1.2 1.4 
H = h/d , ,  

FIGURE 19. Same as figure 17 but for r = 0.5. 

height. These curves remain horizontal in the rarefaction regions for larger H, for 
r = 0.1, 0.2, 0.35. The observed flow types in these figures compare very wcll with 
the theoretical regions, although the region where multiple states are predicted 
(A'D'E' in figure 8) is to some extent an exception, and t,his is discussed below. 

With regard to the agreement between the theoretical r, R curves and the observed 
values, the dependence of bore speed F,,+T on R has been shown in figure 12. An 
inspection of these data points reveals no systematic dependence on H ,  so that r 
depends only on E;, and R. As discussed in $4, the agreement between theory and 
experiment is reasonable except where the bores become turbulent, in which case 
interfacial drag (neglected in the present theory) appears to result in a significant 
reduction of the bore speeds. The dependence of R on F,, and H i s  shown in figure 20 
for r = 0.035, 0.1 and 0.2. Here the agreement is generally good, although there 
is a systematic tendency for the observed R-value to be larger than the theoretical 
one; this is consistent with the difference found in the results of figure 12. Long (1974) 
found quite good agreement between theory and experiment for the dependence of 
R on F,, and H for the case r = 0.2, s = 1.0. 

In  the regions where upstream rarefaction takes place, quantitative measurement 
of its magnitude was not possible because, in most cases, the length of the tank was 
insufficient for the flow to reach a steady state near the obstacle. The observations 
were, however, qualitatively consistent with theoretical expectations. 

To compare the present results with those of Houghton & Isaacson (1970, 
hereinafter denoted by H & I), we refer to  figure 20 ( r  = 0.5), which is equivalent to 
figures 5 and 11 of H & I. The rarefaction B of H & I is reproduced in figure 20, but, 
instead of the region B where H & I conclude that the flow is persistently unsteady, 
a hydraulic-drop region is found in the present experiments. No hydraulic drops were 
reported by H & I: this is possibly because flow separation in the lee of the obstacle 
is important to this phenomenon, and this is not represented by a two-layer numerical 
model. The nature of the observed hydraulic drops is discussed in more detail in the 
next section. Most of H & I's other results, involving substantial displacement of the 
free surface, are outside the range of the present study. 
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Upstream multiple states 

A series of runs was carried out to test the theoretical prediction of multiple states 
in the region D'A'E' of figure 8, for r = 0.035. The results presented in figure 16 show 
that both supercritical and partially blocked (upstream bore) states were in fact 
obtained in part ofthis region, shown shaded in figure 21. Throughout region D'A'E,  
the normal rapid start to a constant towing speed for the obstacle always resulted 
in supercritical flow. In  order to realize partially blocked flow, it was necessary to 
commence towing a t  a speed such that F,, was below A ' E ,  and, after steady-state 
flow was reached near the obstacle, to increase the towing speed to values above A ' E .  
I n  these runs, i t  was evident that i t  was necessary to build up the upstream bore to 

6-2 
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A’ 0.2 0.4 0.6 0.8 
-c > H  

FIGURE 21. The region of the (F,,,,H)-diagram where hysteresis in the 
upstream flow was observed, for r = 0.035. 

a sufficiently large amplitude to enable it to move ahead of the obstacle when the 
speed was increased to values above A ’ E .  

In  all cases where this phenomenon was observed, the relative upstream bore speed 
was very small. To demonstrate that the upstream bore actually moved further ahead 
after the maximum speed was attained in some cases, observations of the bore 
displacement relative to the obstacle are shown in figure 22 from three runs where 
the speed was increased from values below A ’ E  to values above A ’ E .  In  these runs, 
only one upstream bulge had time to develop, as shown in figure 2 3 ( a ) .  After the 
increase in speed the bore (or bulge) at first remained in an approximately steady 
position relative to the obstacle whilst its height slowly increased, and i t  subsequently 
moved further ahead relative to  the obstacle at a constant speed (figure 23b) .  
Figure 2 3 ( c )  shows the corresponding supercritical flow state, which in this case is 
realized for a lower towing speed (&, = 1.65) than that for figures 23 (a,  b ) .  

Despite numerous attempts, no steady-state upstream bores could be obtained in 
the region D‘A’E other than the shaded region of figure 21. This can be attributed 
to the fact that  observed speeds are slightly slower than the theoretical ones, 
particularly when the flow becomes turbulent for R > 2 .3 .  Also, for states that were 
very close to the upper boundary of the shaded region, in some cases the upstream 
bore was stationary relative to the obstacle; in these cases the bore was conspicuously 
turbulent, and this interfacial drag is apparently responsible for the reduction in the 
relative bore speed. 

For r = 0.1 the same procedure was utilized to search for multiple states in region 
D’A’E, but only supercritical flow could be realized. The theoretical two-state region 
is much smaller here than for r = 0.035, and this failure to obtain blocked states is 
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F,, = 1.72 
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''1 < u 0 = l . 0 1 9  

5 4.0 F , ,  = I .79 - 
r = 0.035 

Distance of the obstacle centre from right-hand end of tank (cm) 

FIGURE 2 2 .  Evidence for two-state flows. Distance between the centre of the upstream bulge and 
the obstacle centre, as a function of distance along the tank, for three runs where the towing speed 
was initially substantially smaller, and then increased to a constant value, after which these 
observations were taken. Points with 400 < x < 550 cm were recorded by camera C 1 ,  
550 < x < 700 cm by camera C 2 .  

FIQURE 23. Observations from the run with F,, = 1.79 of figure 2 2 .  (a)  x = 489 cm, where x is the 
abscissa of figure 2 2 ;  ( b )  x = 664 cm; (c) supercritical flow for Fl, = 1.65. 
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FIGURE 24. ((I) A downstream undular hydraulic drop, r = 0.35, Flu = 0.674, H = 0.686. (h) 
Downstream turbulent hydraulic drop, r = 0.35, F', = 0.607, H = 1.6. (c) As for ( b ) ,  but with 
F,, = 0.70. 

again attributed to the effect of interfacial drag on bore speeds. An inspection of 
the figures 17-19 shows that a small change in rresults in a substantial displacement 
of the curve (r = constant) for r = 0.1, 0.2 and 0.35, particularly when r is small. 
The assumed effects of interfacial friction are largest when R is large, and this 
prevents the details of the theoretical diagrams in the regions D'E' of figure 8 from 
being realized experimentally. 

6. Downstream effects and hydraulic drops 
I n  the preceding sections we have discussed the character of the flow upstream of 

the obstacle. In  this section we give a relatively brief description of the nature of the 
observed flow over and downstream of the obstacle. Flow types A, B, C and D of 
figure 4 occur in single-layer flows and require no further discussion here. Flow types 
E and F are new, and their form is described below. 

As stated in €33, as E;, and H are increased, the amplitude of the upstream interface 
displacement increases until the flow just upstream becomes almost (locally) critical. 
This is its maximum amplitude (since a larger-amplitude disturbance would travel 
more slowly than the obstacle speed), and for this case and other cases with larger 
F', and/or H the flow over the obstacle is supercritical. The flow must still adjust 
to the downstream conditions, however, and since thc upper layer is thicker upstream 
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FIGURE 25. Example of two flow states for the same steady conditions, r = 0.71, H = 1.04. (a) 
F,, = 0.357, with towing speed reduced to  this constant value. (b) E;, = 0.358, with towing speed 
increased to this constant value. 

it must (by conservation of mass) be thinner downstream before, eventually, 
attaining its initial undisturbed state far downstream by means of a further hydraulic 
jump and/or rarefaction. For these situations the flows were observed to  make this 
transition from one supercritical state to  a conjugate supercritical one via an energy 
dissipating hydraulic drop. These drops may be laminar as shown in figure 24 ( a ) ,  or 
turbulent as in figures 24 (b ,  c ) .  Such drops were only obtained for r = 0.35 and r = 0.5 
in these experiments, and in many cases a short obstacle was used, so that the 
hydrostatic assumption was not strictly valid. Nevertheless the observations were 
all found to be consistent with the necessary criteria for the above interpretation. 

Equations for these flows are complicated by the fact that  the flow is asymmetric 
over the obstacle, so that the form drag of the obstacle is probably significant. This 
means that conditions upstream and downstream of the obstacle cannot be easily 
related. The upstream and downstream flow states of the drops are approximately 
symmetrical, and energy loss occurs in the drop. Flow separation may be a significant 
factor in some drops, particularly for short obstacles. 

Hydraulic drops were found in the regions P E G  and PA'G of figures 8 ( d )  and 
8 ( e )  respectively, as expected, with flow type E. For sufficiently large H ( 2 0.4) they 
were also found in the supercritical region above A ' G ,  where flow type 2F was 
obtained, but these were with the short steep obstacle M2.  In the latter case it seems 
probable that separation was an essential ingredient in determining the flow 
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character. Figure 9 of Long (1954), reproduced in Baines & Davies (1980), is probably 
the first published example of flow type 2F. 

Hydraulic drops and multiple states? 

Some experimental runs with a relatively deep upper layer ( r  = 0.71) produced 
evidence that, under some circumstances, more than one steady state may exist here 
also. I n  these cases the upstream flows were similar but significant differences were 
found in the downstream flow, This parameter range was not studied extensively and 
we restrict description here to  one example. Figure 25 shows two flows with nearly 
equal steady-state conditions. I n  figure 25 ( a )  (Fl0 = 0.357) the flow state was attained 
by establishing a towing speed of 15.51 cm/s immediately after start-up, and then 
subsequently decreasing i t  to 12.74 cm/s, after which the picture was taken; in figure 
26 ( b )  the flow state was attained in a similar manner but instead the towing speed was 
increased from 9.89 cm/s to 12.79 cm/s. The main difference between the two flows 
is clearly the large ‘hole’ in the upper layer in figure 26(b), where the fluid passes 
through a hydraulic dropjump pair in which the jump is highly turbulent; the 
subsequent downstream flow is similar to  that of figure 25 ( a ) .  Both of these flow states 
were stable and persisted over a distance of a t  least several metres. The towing speed 
was in the ‘rarefaction’ regime for the internal mode, and in the ‘partially blocked’ 
regime for the external mode, so that there is a difference in elevation of the free 
surface between upstream and downstream. 

7. Discussion and summary 
We have investigated the general nature of nonlinear two-layer quasi-hydrostatic 

flow of immiscible fluids over a long obstacle, in situations where only the internal 
(interfacial) mode is significant, and the layer containing the obstacle is not initially 
deeper than the other layer. The results are generally applicable to the two-layer 
systems where the internal mode is dominant (with minor quantitative changes), and 
have been carried out as part of a programme to understand the general character 
of the motion upstream of obstacles in geophysical flows. When the layer through 
which the obstacle moves is thin (r 4 1 )  the flow has similar character to  the 
well-known single-layer flow shown in figure 1 ; when the layers are of comparable 
depth ( r  x 0.5), on the other hand, the flow character is similar to that shown in 
figure 2 (ignoring the higher-order modes). The nature of the transition between these 
cases as r increases is shown in figure 8, and in more detail in figures 15-19; these 
provide a reasonably complete description of the flow character over a wide range of 
r-values up to 0.5. 

The upstream motion may consist of an  undular or turbulent internal bore, or an 
internal rarefaction, or a non-undular laminar bore with a rarefaction. The reasons 
for this variety of behaviour may be interpreted in terms of the variation of linear 
wave speed with layer depth ratio r ,  as shown in figure 7 .  Depending on the value 
of r ,  linear-wave speeds immediately upstream of the obstacle may vary with 
upstream-disturbance amplitude in any one of the three forms shown in figure 26 ( a ) .  
The upper curve corresponds to an upstream bore (type 3 of figure 4), since larger 
disturbances travel faster and cause the upstream displacements to steepen. The 
central curve corresponds to upstream motion which takes the form of linear 
non-dispersive waves moving a t  constant speed ; this is approximately the case for 
the continuously stratified fluid of figure 2 and for r = 0.5, a t  small amplitudes. The 
bottom curve corresponds to a rarefaction (type 5 of figure 4)  ; here, larger disturbances 
travel more slowly and cause the upstream motion to spread out (amplitude-dependent 
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dispersion). I n  some situations (e.g. figure 5 ( d ) ,  and other states in region G E C '  of 
figure 8 ( d ) )  the curve may take the form shown in figure 2 6 ( b ) ,  where the upstream 
motion consists of a bore a t  small amplitudes, but as this amplitude increases, the 
energy loss a t  the bore front decreases to zero so that the bore degenerates to a smooth 
transition of constant shape; a further increase in amplitude is then manifested as 
a rarefaction, which may be increased until the flow becomes locally critical. Beyond 
this point (i.e. this obstacle speed uo) no further increase in upstream amplitude is 
possible. 

We may note that of the two factors that one may expect to affect the propagation 
of upstream disturbances, namely nonlinear steepening and linear dispersion, the 
latter has virtually no effect on the upstream speed and amplitude, which are 
governed by nonlinear factors. Dispersion is, however, important in determining the 
character of the upstream motion; as with solitary waves, the nature of upstream 
undular bores is governed by a balance between these two factors, as discussed in 
$4, and interfacial friction is also significant for a steady state. 

For hydrostatic flow, the interface at  the obstacle crest must either have zero slope 
or be critical, as for single-layer flow. I n  two-layer flow this requirement can result 
in a downstream hydraulic drop, which may be laminar or turbulent. Whereas in 
hydraulic jumps the flow changes from supercritical to subcritical (moving down- 
stream), in these hydraulic drops the flow changes from one supercritical state to 
another, with an associated energy loss. 

Two separate examples of multiple states or 'hysteresis ' in the flow were observed. 
First, the anticipated double state of figure 1 was confirmed for part of the expected 
region for r = 0.035, but could not be realized for higher values of r ,  because the 
observed bore speeds were less than the predicted theoretical ones. It is suspected 
that this discrepancy is due to interfacial stress, because the observations and 
theory appear to  diverge more sharply once the observed bores become turbulent 
(figures 1 2 a , b ) .  Secondly, a new example, not fully understood, was observed 
downstream for large obstacles when r = 0.71, where the flow may or may not have 
a hydraulic drop and jump pair. 

The present experiments were carried out with two immiscible fluids with a 
reasonably large density difference (density ratio s = 0.79). For comparison some 
qualitative runs were carried out with two miscible fluids (salty and fresh water) with 
a much smaller density difference ( s  = 0.97). Although quantitative comparisons were 
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not made, the observed flows were generally consistent with the immiscible results 
and the analysis of $3,  except that turbulence and mixing in the upstream bores 
occurred much more readily than for the immiscible experiments. Consequently, for 
these theories to be applicable to  geophysical situations some account must be taken 
of this behaviour, as the upstream bores may behave more like gravity currents than 
the large-amplitude undular structures described here, particularly a t  large 
amplitude. 

Finally, we may note the relevance of these flows for flow in the atmosphere. Apart 
from the general contribution to knowledge of finite-amplitude effects of obstacles 
and mountain ranges, the results may be qualitatively applicable (with the modifi- 
cations of the previous paragraph in mind) to certain situations where a low-level 
stable layer exists, surmounted by a weakly stratified layer. Reports of upstream 
motions of the type described here in the atmosphere are rare. This is probably 
because these upstream motions are most strongly manifested in the horizontal 
velocity, and hence they are not easily observed unless the winds are measured and, 
probably, their presence is anticipated. Most mountains are not two-dimensional, and 
the extent of these motions upstream will depend on the obstacle shape. One example 
has been reported by Edinger (1966) who described upstream waves (undular bore ?)  
in a shallow stable layer off Point Sal, California, and gave a brief survey of some 
other similar observations. Whether or not such features as hydraulic drops are 
important for flows downstream of mountain ranges remains to be determined. 

The author is most grateful to David Murray for his assistance a t  all stages of the 
experiments, and to Robert Bell for programming the rarefaction equations of 93. 
He is also grateful to two referees for a number of helpful comments which improved 
the manuscript, and to  Roger Grimshaw for some enlightening discussions. 

Appendix. The effect of viscous boundary layers on undular bore structure 
We here estimate the magnitude of viscous boundary-layer effects on the function 

L (4.8). We consider an idealized model of the bore, where, for the purposes of this 
calculation, the bore front is regarded as a jump, the waves are ignored and a viscous 
boundary layer on each side of the interface is assumed. Viscous boundary layers will 
also be present on the tank floor and sidewalls. Axes are taken moving with the bore, 
and the origin is taken a t  the interface a t  the bore front. The velocities in the upper 
and lower layers are denoted respectively by 

u1 = U,+W,, up = u2+w2, (A 1)  

where U ,  and U2 are the inviscid velocities and w1 and v2 the velocities resulting from 
stress a t  the interface. Changes in L are supposed to result from viscous processes 
only, and from (4.3) and (4.8) we have 

dl I 

L ( x )  = p2 j O  ( U i -  ( U ,  + W A 2 )  dz+p, j, (u; - (Ul dz. (A 2) 
-dzi 

We first consider the contributions to L from the boundary layers a t  the interface, 
and denote these by Li; corresponding contributions from the bottom and sidewall 
boundary layers are denoted by Lb, so that 

L = L,+L,.  (A 3) 
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Assuming a steady state, making the customary boundary-layer assumptions and 
linearizing the equations for v1 and v2 results in a pair of diffusion equations (with 
x time-like) for v, and v2, with the boundary conditions of continuity of velocity and 
equality of stress a t  the interface. The solution is mathematically complex and will 
not be pursued here, but substitution into (A 2) shows that 

(A 4) 
0 

Li(x)  x -PZ JpdZl 

The upper and lower boundary layers have the lengthscales 2(v,x/ U,)+, 2(v2x/ U2)i 
respectively, where v1 and v2 denote the viscosities of the respective fluids, and in order 
to estimate Li we may take 

v1 = ;(u,-U,) (0 < z < 2 ( 3 4 ) ,  1 
= 0 (2(:)'< z < dll) 

Substitution into (A 4) gives 

Li x -;( U, - Ul)Z [pl (q + p, (">:I 2:. (A 6) 
Ul u2 

Applying the same procedure to the side and bottom boundary layers yields 

where c1 is the bore speed and w is the tank width. 
From conservation of mass we have 

Taking U ,  - U ,  - co, v l  - v,, p1 - p2 we obtain 

v x 4 (R-l)2 r(R-1) 4 
"-plC:($) [R2(1-rR)2 + 2 (F) (1 + 2 $) (1 + O( r( R - 1 )) 

- 4 L  (R- 1)t (1 + O(R- l))] (A 9) 
W 

Additional effects due to the presence of waves will not affect this estimate greatly. 
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